Computer Architecture

Lecture 8
Logic Instructions
Asst. Lect.:Noor H. Hassoon

(1)

ORA	R	Logical OR register or memory with accumulator The contents of the accumulator are logically ORed
	M	with the contents of the operand (register or memory), and the result is placed in the accumulator. 3. If the operand is a memory location, its address is specified by the contents of HL registers. 4. S, Z, P flags are modified to reflect the result of the operation. 5. CY and AC are reset. 6. Example: ORA 45 _H

Truth Table of OR instruction

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	0

Example:

• Write program in 8085 to store 9D_H in memory location 5060_H use indirect method. Then ORed them with the data from input port F1_H that represented by switch number 1 and 2 are on and other switches are off. Show what are the flags?.

- LXI H, 5060_H
- MVI M, 9D _H
- IN F1 _H
- ORA M

S	Z	AC	Р	CY

(2)

ORI	8-bits data	 Logical OR immediate with accumulator The contents of the accumulator are logically ORed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P flags are modified to reflect the result of the operation. CY and AC are reset.
		5. Example: ORI 55 _H

Example:

• Write program in 8085 to load $9D_H$ from memory location 5060_H use indirect method. Then ORed immediate the data with register C that hold F0. Explain which switches on port 00_H are turn off?

- LXI H, 5060_H
- MOV A, M
- ORI C
- OUT 00

(3)

ANA	R M	Logical AND register or memory with accumulator The contents of the accumulator are logically ANDed with the contents of the operand (register or
		memory), and the result is placed in the accumulator.
		If the operand is a memory location, its address is specified by the contents of HL registers.
		 S, Z, P flags are modified to reflect the result of the operation.
		5. CY is reset. AC is set.
		6. Example: ANA 63 _H

Truth Table of AND instruction

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Example:

• Write program in 8085 to store the Values (55, 65, 75, 85, 95) in memory locations (5000, 5001, 5002, 5003, 5004)_H respectively use indirect method. Then ANDed these data and store the result in memory location 5005_H?

LXI H, $5000_{\rm H}$	INX H	DCX H	DCX H
MVI M, $55_{\rm H}$	MVI M, $85_{\rm H}$	ANA M	ANA M
INX H	INX H		
MVI M, $65_{\rm H}$	MVI M, 95 _H	DCX H	DCX H
INX H		ANA M	ANA M
MVI M, 75 _H	MOV A,M		
			$STA 5005_{H}$

(4)

ANI	8-bits data	 Logical AND immediate with accumulator The contents of the accumulator are logically ANDed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P flags are modified to reflect the result of the operation. CY is reset. AC is set. Example: ANI 8D_H
-----	-------------	--

Example:

• Write program in 8085 ANDed immediate the value of register C with value of register H, if register C has 78 while register H holds 22. What are the values of flags.

- MOVA, C
- ANIH

(5)

XRA	R M	 Exclusive OR register or memory with accumulator The contents of the accumulator are Exclusive ORed with the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location, its address is specified by the contents of HL registers. S, Z, P flags are modified to reflect the result of the operation. CY and AC are reset.
		6. Example: XRA 55 _H

Truth Table of AND instruction

X	Υ	X XRA Y
0	0	0
0	1	1
1	0	1
1	1	0

Example:

• Write program in 8085 to clear the Accumulator if it has $\mathrm{B3_{H}}$. Add the content of memory location $\mathrm{30FF_{H}}$ with register L. Show the result on port $\mathrm{50_{H}}$

- XRA A
- LDA 30FF_H
- ADD L
- OUT 50_H

(6)

	XRI	8-bits data	Exclusive OR immediate with accumulator
			2. The contents of the accumulator are
			Exclusive ORed with the 8-bit data
			(operand) and the result is placed in the
			accumulator.
			3. S, Z, P flags are modified to reflect the
			result of the operation.
			4. CY and AC are reset.
3			5. Example: XRI 63 _H

Example:

• Write program in 8085 to clear the Accumulator if it has $B3_{H}$. XRed Immediate the content of memory location $30FF_{H}$ that has 33_{H} with 77_{H} . Show which switch on port 50H is turn on.

- XRAA
- LDA 30FF_H
- XRI 77_H
- OUT 55_H

(7) RRC

 RRC 1. Rotate accumulator right 2. Each binary bit of the accumulator is rotated right by one position. 3. Bit D0 is placed in the position of D7 as well as in the Carry flag. 4. CY is modified according to bit D0. S, Z, P, AC are not affected. 5. Example: RRC

Example

• Store the data 55H in memory location 3001 and the register B with 37H. Add these data then rotate the result right.

- MVI A, 55_H
- STA 3001
- MVI B, 37
- LDA 3001
- ADD B

		1	1	1		1	1	1	
A	=	0	1	0	1	0	1	0	1
В	. = .	0	0	1	1	0	1	1	1
Resu	lt A =	1	0	0	0	1	1	0	0

Flags

0000000	S	Z		AC	p	CY
0000000	1	0		0	1	0

RRC

Result after RRC

8				2	× 2	8		
2222222	0	1	0	0	0	1	1	0

Flags after RRC

S	Z		AC	p	CY
1	0		0	1	0

(8) RLC

RLC	 Rotate accumulator left Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the position of D0 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are not affected. Example: RLC

Example

• Store the data FF_H in memory location 3001 and the register B with 87_H . Add these data then rotate the result Left.

- LXI H, 3001
- MVI M, FF_H
- MVI B, 87_H
- MOV B,A
- ADD M

		1	1	1	1	1	1	1	1		
	A	=	1	0	0	0	0	1	1	1	
]	M	=	1	1	1	. 1	1	1	1	1	
R	esul	t A =	1	0	0	0	0	1	1	0	

Flags

S	Z	y .	AC	p	CY
1	0		1	1	1

RLC Result after RLC

	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
0	0	0	0	1	1	0	1

Flags after RLC

S	Z	->	AC	p	CY
1	0		1	1	1

(9) RAR

 4. CY is modified according to bit D0. S, Z, P, AC are not affected. 5. Example: RAR 	RAR	
---	-----	--

Example

• Store the data FF_H in memory location 3001 and the register B with 87_H. Add these data then rotate the result Right with carry.

- LXI H, 3001
- MVI M, FF_H
- MVI B, 87_H
- MOV B,A
- ADD M

	1	1	1	1	1	1	1	1	
A		1	0	0	0	0	1	1	1
\mathbf{M}	=	1	1	1	1	1	1	1	1
Resul	lt A =	1	0	0	0	0	1	1	0

Flags

S	Z	ļ	AC	p	CY
1	0		1	1	1

Carry 0

RAR

Result after RAR

	resure ar	ici ici ici		9 9	93.	93		Sie.
>	1	1	0	0	0	0	1	1

Flags after RAR

S	Z		AC	p	6	CY
1	0		1	1		0

(10) RLR

RLR	 Rotate accumulator right through carry Each binary bit of the accumulator is rotated left by one position through the Carry flag. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the most significant position D0.
	4. CY is modified according to bit D7. S, Z, P, AC are not affected.5. Example: RLR

Example

• Store the data FF_H in memory location 3001 and the register B with 87_H . Add these data then rotate the result left with carry.

- LXI H, 3001
- MVI M, FF_H
- MVI B, 87_H
- MOV B,A
- ADD M

	1	1	1	1	1	1	1	1	
\mathbf{A}		1	0	0	0	0	1	1	1
M	=	1	1	1	1	1	1	1	1
Resul	t A =	1	0	0	0	0	1	1	0

Flags

I Iugs					
S	Z		AC	p	CY
1	0		1	1	1

Carry 1

RLR

Result after RLR

	ixesuit ai	ICI ILIX		6 59	9 98	98		Se.
1	0	0	0	0	1	1	0	1

Flags after RLR

S	Z		AC	p	CY
1	0		1	1	1

(11) CMA

CMA	Complement accumulator	
	The contents of the accumulator complemented.	are
	No flags are affected.	
	4. Example: CMA	

Example

• Store the data FFH in memory location 3001 and the register B with 87H. Add these data then complement the result.

Answer

LXI H, 3001 MOV B,AMVI M, FFH ADD M

• MVI B, 87

	1	1	1	1	1	1	1	1	
A	=	1	0	0	0	0	1	1	1
M	=	1	1	1	1	1	1	1	1
Resu	lt A =	1	0	0	0	0	1	1	0

Flags

S	Z		AC	p	CY
1	0		1	1	1

CMA

Result after CMA

0 1 1	1	1 0	0	1
-------	---	-----	---	---

Flags after CMA

S	Z		\mathbf{AC}	p	CY
1	0		1	1	1

The End